This isn't even the half of it! It's been a long haul.

s = x_{1} - x_{0}

x = v_{x}t

v_{1} = v_{0} + at

x = v_{0}t + 1/2at^{2}

x = 1/2(v_{0} + v_{1})t

v_{1}^{2} = v_{0}^{2} + 2ax

(In two dimensions use x & y components)

Net Force F = ma

F_{g} = Gm_{1}m_{2}/r^{2}

F_{N} = mg sin(theta)

F_{f} = mu F_{N}

W = Fs

E_{k} = 1/2mv^{2}

W = E_{kf} - E_{k0}

U_{g} = mgh

E = E_{k} + E_{rot.} + U_{g} + U_{s} + W_{f} + ... (Other forms)

E_{f} = E_{0}

P = W/t

P = Fv

J = Ft

p = mv

Ft = mv_{1} - mv_{2}

m_{1}v_{1f} + m_{2}v_{2f} = m_{1}v_{10} + m_{2}v_{20}

x_{cm} = (m_{1}x_{1} + m_{2}x_{2} + ...)/(m_{1} + m_{2} + ...)

v = 2*pi*r/T

a_{c} = v^{2}/r

F_{c} = mv^{2}/r

tan(theta) = v^{2}/(rg)

v^{2} = GM_{p}/r

T^{2} = 4*pi^{2}r^{3}/(GM_{p})

W_{ap} = mg + ma

s = r(theta)

v_{T} = r*omega

a_{T} = r*alpha

omega_{1} = omega_{0} + alpha*t

theta = 1/2(omega_{1} + omega_{0})t

theta = omega_{0}t + 1/2*alpha*t^{2}

omega_{1}^{2} = omega_{0}^{2} + 2*alpha*theta

theta = omega*t

a_{c} = r*omega^{2}

torque = Fr

x_{cg} = (W_{1}x_{1} + W_{2}x_{2} + ...)/(W_{1} + W_{2} + ...)

I = k*mr^{2} (k tends to = 1/2, 2/5, etc.)

W_{R} = (tau)*(theta)

E_{kR} = 1/2I*omega^{2}

P_{R} = I*omega

F = kx

U_{s} = 1/2kx^{2}

x = Acos(omega*t)

v = -A*omega*sin(omega*t)

v_{max} = A*omega

omega = (k/m)^{1/2}

2*pi*f = (mgL/I)^{1/2}

rho = m/V

P = F/A

m^{dot} = dm/dt

A_{1}v_{1} = A_{2}v_{2}

Q = Av

P_{2} - P_{1} = (1/2mv_{2}^{2} + mgy_{2}) - (1/2mv_{1}^{2} + mgy_{1})

delta L = alpha*L_{0}*delta T

delta V = beta*V_{0}*delta T

Q = cm*delta T

Q = mL

delta U = Q - W

W = P*delta V

W = nRT*ln(V_{f}/V_{0})

Q = Cn*delta T

e = W/Q_{H}

Q_{H} = W + Q_{C}

Q_{C}/Q_{H} = T_{C}/T_{H}

delta S = (Q/T)_{R}

f = 1/T

v = F*lambda

v = (T/m/L)^{1/2}

y = A*sin(2*pi*ft - 2*pi*x/lambda)

I = P/(4*pi*r^{2}

decibels = 10*log(I/I_{0})

f_{o} = f_{s}(v +- v_{o})/(v +- v_{s})

sin(theta) = lambda/D or 1.22*lambda/D

f_{beat} = f_{2} - f_{1}

f_{n} = n(v/2L) n = 1,2,3,4... or n(v/4L) n= 1,3,5,7...

e = 1.60 x 10^{-19} C

F = kq_{1}q_{2}/r^{2}

k = 8.99 x 10^{9}Nm^{2}/C^{2}

E = F/q_{0}

E = kq/r^{2}

E = q/A/e_{o}

W_{AB} = EPE_{A} - EPE_{B}

V = EPE/q_{0}

V_{B} - V_{A} = -W_{AB}/q_{0}

V = kq/r

E = delta V/delta x

q = CV

k = E_{0}/E

C = ke_{o}A/d

E = 1/2CV^{2}

I = delta q/delta t

V = IR

R = rho*L/A

rho = rho_{0}*[1 + alpha*(T - T_{0})]

R = R_{0}*[1 + alpha*(T - T_{0})]

P = IV

P = I^{2}R

P = V^{2}/R

R_{S} = Sum (R_{n})

1/R_{P} = Sum (1/R_{n})

C_{S} = Sum (1/C_{n})

C_{S} = Sum (C_{n})

F = qvB*sin(theta)

r = mv/qB

F = ILB*sin(theta)

torque = NIAB*sin(theta)

B = mu_{0}I/(2*pi*r)

B = Nmu_{0}I/(2R)

B = mu_{0}nI

c = f*lambda

c = (e_{0}mu_{0})^{-1/2}

u = 1/2e_{0}E^{2} + 1/(2mu_{0})B^{2}

E = cB

S = S_{0}cos^{2}(theta)

theta i = theta r

f = R/2

1/d_{o} + 1/d_{i} = 1/f

M = h_{i}/h_{o} = -d_{i}/d_{o}

n = c/v

n_{1}sin(theta 1) = n_{2}sin(theta 2)

sin(crit. theta) = n_{2}/n_{1}

sin(theta) = m*lambda/d, m = 0,1,2,3...

sin(theta) = m*lambda/W, m = 1,2,3...

theta = 1.22*lambda/D

E_{i} - E_{f} = hf

L_{n} = n*h/(2*pi), n = 1,2,3,...

r_{n} = 5.29 x 10 ^{-11}n^{2}/Z

E_{n} = -(13.6eV)Z^{2}/n^{2}

1/lambda = RZ^{2}(1/n_{f}^{2} - 1/n_{i}^{2})

E = nhf, n = 0,1,2,3,...

E = hf

K_{max} = hf - work function

p = h/lambda

E = mc^{2}